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Many assessments of writing proficiency that aid in making high-stakes decisions consist of several essay tasks evaluated by a com-
bination of human holistic scores and computer-generated scores for essay features such as the rate of grammatical errors per word.
Under typical conditions, a summary writing score is provided by a linear combination of the holistic scores and the feature scores.
The best linear predictor (BLP) is used to approximate the true composite writing score by a linear combination of holistic scores and
scores of essay features. However, because the relationship between computer-generated feature score and human scores may depend
on subgroup membership and the same scoring rules must normally be applied to all test takers, Yao, Haberman, and Zhang proposed
a modified methodology of the penalized best linear predictor (PBLP) by incorporating a quadratic penalty function into the conven-
tional BLP method. This research report contains full accounts of the BLP results as well as supplementary PBLP results to Yao et al.
for three assessments of writing that aid in making high-stakes decisions: the TOEFL iBT® Writing test, the GRE® General Analytical
Writing subject test, and the Praxis® Core Academic Skills for Educators: Writing assessment. Results obtained indicate the added
value in using machine features for prediction of composite true scores of essay writings and effectiveness of the penalty function in
suppressing the lack of population invariance.

Keywords Automated scoring; writing assessment; best linear predictor; penalty function
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Classical test theory (Lord & Novick, 1968) may be applied to develop scores for writing assessments that consist of several
essay tasks for which both human holistic scores and computer-generated scores of essay features are available. Under
typical conditions, the summary writing score is based on a linear combination of the holistic scores and the feature scores.
The linear combination is selected to predict a true composite writing score that corresponds to an observed weighted
average of human holistic scores. Best linear prediction (BLP; Haberman, 2008; Haberman & Qian, 2007; Haberman &
Yao, 2015; Haberman, Yao, & Sinharay, 2015; Wainer, Sheehan, & Wang, 2000; Wainer et al., 2001) may be used to find
the best linear combination of observed human scores and computer-generated feature scores for prediction of the true
composite writing score, to minimize the mean squared error that is the expected square of the residual difference between
the true composite score and its linear prediction. In the case of scoring accuracy, the true composite writing score is the
expected composite writing score achieved by random selection from a population of human raters for the two specific
essays observed. In the case of assessment accuracy, the true composite writing score is the expected composite writing
score obtained by a test taker tested on a randomly selected test form from a population of parallel writing assessments.
For example, the TOEFL iBT® Writing test (TOEFL® Writing) consists of two essay prompts, an integrated prompt and
an independent prompt. Human raters use scoring rubrics to provide an integer holistic score for each prompt. Normally,
for each of the two prompts, the e-rater® automated scoring engine (Attali & Burstein, 2006; Attali, Burstein, & Andreyev,
2003; Burstein, Chodorow, & Leacock, 2004) provides numerical measures (feature scores) of aspects of essay quality,
such as grammatical correctness and syntactic structure. A possible observed composite score is the arithmetic average
of the observed holistic score on the integrated prompt and the observed holistic score on the independent prompt. For
either scoring accuracy or assessment accuracy, the true composite score corresponds to this average. With BLP, the true
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composite score is then estimated from both the observed holistic scores on the two prompts and from the observed essay
feature scores from the two prompts.

When BLP is used to predict the true composite score from both human holistic scores and computer-generated essay
features, problems of fairness can arise if the relationship of human holistic scores to computer-generated essay features
is not the same for all subgroups of interest. For example, in TOEFL Writing, fairness concerns arise if the relationship
of human holistic scores to computer-generated essay features for Chinese test takers is different from the corresponding
relationship for Japanese test takers. Given the general principle that two test takers with the exact response quality should
receive the same test score, this issue can result in scores based on BLP rather than on observed composite scores that have
a differential impact on Chinese test takers relative to Japanese test takers. This problem is closely related to the problem
of population invariance in equating (Dorans & Holland, 2000) and to the problem of subgroups in score augmentation
(Haberman & Sinharay, 2013). To treat the issue of subgroup biases, Yao, Haberman, and Zhang (2019) developed a gener-
alized version of BLP as the penalized best linear predictor (PBLP). With PBLP, linear predictors are found by minimizing
the sum of mean squared error of prediction and a quadratic penalty function. If the penalty function is always 0, then
PBLP reduces to BLP. In general, the penalty function relies on division of the population of test takers into subgroups
defined in terms of variables like testing country, native language, or race/ethnicity. The quadratic penalty function is a
nonnegative multiple of the mean squared conditional expected residual difference between the true composite score and
its linear prediction given subgroup membership. The value of the modification of BLP is assessed via examination of two
generally competing criteria: the mean squared error of prediction of the true composite score and the mean difference
in subgroup means for observed composite score and rescaled predicted score, where the rescaled predicted score has the
same overall mean and standard deviation as the observed composite score.

Data from TOEFL Writing, the GRE® General Analytical Writing test (GRE Writing), and the argumentative essay
of the Praxis® Core Academic Skills for Educators: Writing assessment (Praxis Writing) illustrate use of the proposed
methodology in tests that aid in making high-stakes decisions. These testing programs are sufficiently varied to allow
examination of the BLP method and its extension via a quadratic penalty function in writing assessments that differ in
terms of reported score scale, rate of double human scoring, and number of essay prompts. This report, in great detail,
describes the applications of BLP and PBLP methods to these three testing programs, by which means it empirically
complements the theoretic framework developed in Haberman et al. (2015) and Yao et al. (2019).

The following two research questions are examined in this study:

1 How well does BLP based on both human holistic scores and computer-generated feature scores perform compared
to BLP based solely on human holistic scores in terms of scoring accuracy and assessment accuracy?

2 Can PBLP improve comparability for different subgroups of test scores based on observed composite scores and
rescaled test scores based on linear prediction of true composite scores without a major sacrifice of overall scoring
accuracy and assessment accuracy?

To apply BLP or PBLP, estimation of variances and covariances of measurement errors are required. As in Haberman
et al. (2015) and Yao et al. (2019), we consider two versions of estimation for the variances and covariances of the mea-
surement errors. In the case of scoring accuracy, measurement errors are uncorrelated, and their variances are estimated
by use of agreement samples in which more than one rater evaluates an essay. In typical cases of assessment accuracy, the
covariance matrix of the measurement error is estimated from repeater data (data on test takers who take a test more than
once) weighted by minimum discriminant information adjustment (MDIA), as in Haberman (1984), to compensate for
bias due to the usual situation in which repeater samples are not representative of the overall population of test takers.

In the Methods section the basic model for the data is presented, and a brief description is provided of BLP and PBLP.
The section Best Linear Predictor and Penalized Best Linear Predictor Methods provides a brief introduction of BLP and
PBLP methods. The section Proportional Reduction in Mean Squared Error Measures provides a description of predictor
evaluation by mean squared error and proportional reduction in mean squared error (PRMSE), and the section Estima-
tion of Best Linear Predictor and Penalized Best Linear Predictor provides technical details for model estimation. The
Scoring Accuracy section treats scoring accuracy, while the Assessment Accuracy section deals with assessment accu-
racy. The Subgroup Analysis section considers the linear linking procedure applied to subgroup evaluation. The proposed
methodology is illustrated in the Applications section through application to three testing programs, and the Discussion
section provides concluding remarks.
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Methods

This section describes the general measurement model and the most straightforward instances of BLP and PBLP. In
the case of BLP, the material described is based on Haberman et al. (2015); however, we consider more general treat-
ment that permits applications to tests with numbers of prompts other than two, whereas the theory of the PBLP method
mainly refers to Yao et al.

Consider an assessment with J ≥ 1 prompts. For some positive integer K, a generic observation is a K-dimensional
vector X with elements Xk, 1≤ k≤K, where K ≥ J. In the model in which each prompt receives a single human holistic
score and no computer-generated data are used, Xk is the holistic score for prompt k, 1≤ k≤ J =K. For example, J =K
might be 2, where X1 equals the holistic score assigned by a rater to the first prompt and X2 equals the holistic score
assigned by a rater to the second prompt. Both TOEFL Writing and GRE Writing are special cases of this example; however,
in Praxis Writing, J =K reduces to 1. In examples in this report, Xj, 1≤ j≤ J, is a human holistic score on prompt j. If J <K,
then additional human holistic ratings and/or computer-generated features are employed.

In all cases, the vector X is assumed to have a finite mean and a finite and positive-definite covariance matrix Cov(X)
with row k and column k′, 1≤ k≤K and 1≤ k′ ≤K, equal to Cov

(
Xk,Xk′

)
. The vector X may be decomposed into an

unobserved true score component 𝛕 with elements τk, 1≤ k≤K, and an unobserved error component e with elements ek,
1≤ k≤K, so that X= 𝛕+ e. It is assumed that the error vector e has expectation 0K , where 0K denotes the K-dimensional
variable with all elements 0 and it is assumed that e has a finite covariance matrix Cov(e). It is further assumed that the true
score 𝛕 and the error e are uncorrelated, so that τk and ek

′ are uncorrelated for 1≤ k≤K and 1≤ k′ ≤K. This assumption
implies that the covariance matrix Cov(X) of the observed vector X is the sum of the covariance matrix Cov(𝛕) of the
vector 𝛕 of true scores and the covariance matrix Cov(e) of the error vector e, so that Cov(X)=Cov(𝛕)+Cov(e).

This report considers estimation of a composite true score ν = c′𝛕 =
∑K

k=1 ckτk for some K-dimensional vector c with
elements ck, 1≤ k≤K. This composite true score corresponds to the composite observed score O= c′X. Let E(X) denote
the expectation of X; then E(O)=E(ν)= c′E(X).

TOEFL Writing provides an example with J = 2 prompts. One prompt is an integrated task that requires response
to a prompt including both an oral and a written stimulus, and another prompt is an independent task that requires a
response to a written stimulus. Consider a model in which, for each prompt, there are two human holistic scores and
nine computer-generated essay features. In this model, K = 22, X1 equals the first holistic score on the integrated task,
X2 equals the first holistic score on the independent task, X3 is the second holistic score on the integrated task, X4 is the
second holistic score on the independent prompt, X5 to X13 are the feature variables for the integrated task, and X14 to
X22 are the feature variables for the independent task. If c is the 22-dimensional vector with elements c1 = c2 = 1/2 and
ck = 0 for 3≤ k≤K = 22, then ν= c′𝛕 is the true score (τ1 +τ2)/2 of the arithmetic mean (X1 +X2)/2 of the two holistic
scores X1 and X2. If raters are properly randomized, then τ1 =τ3 and τ2 =τ4, so that ν= (τ1 +τ2)/2 is also the arithmetic
mean of τk for 1≤ k≤ 4.

Best Linear Predictor and Penalized Best Linear Predictor Methods

In BLP (Haberman et al., 2015; Haberman & Yao, 2015), the best linear predictor ν̂ = α + 𝛃′X for prediction of the com-
posite true score ν by the observed vector X is the linear function of X with real intercept α and K-dimensional vector 𝛃
of regression coefficients βk, 1≤ k≤K that satisfies E

([
ν − ν̂

]2
)
= MSE, where the mean squared error MSE is the min-

imum of E([ν− a− b′X]2) for any real a and K-dimensional vector b. As long as the covariance matrix Cov(X) of X is
positive definite, ν̂, α, and 𝛃 are uniquely determined and satisfy the equations,

𝛃 = [Cov (X)]−1 Cov (X, ν) , (1)

and
α = E (ν) − 𝛃′E (X) , (2)

where Cov(X, ν) is the K-dimensional vector with element k, 1≤ k≤K, equal to the covariance of Xk and ν (Rao, 1973,
p. 266). The constraints on the covariances of elements of 𝛕 and e imply that Cov(X, ν)=Cov(𝛕)c. This definition of BLP
applies no matter what the covariance matrix Cov(e) of the error vector e may be. For standardized regression coefficients,
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let σ2(ν) denote the variance c′Cov(𝛕)c of ν, so that the nonnegative square root σ(ν) of σ2(ν) is the standard deviation of
ν. For 1≤ k≤K, the standardized regression coefficient corresponding to βk is β*k =σ(Xk)βk/σ(ν).

In a more general framework, given a known KM by K design matrix M of positive rank KM, the predictor MX is
considered. In the simplest case, if KM =K and M is the K by K identity matrix, then MX=X. More generally, if M is
the KM by K matrix with elements Mk′k equal to 1 for k′ = k and to 0 for k′ ≠ k, then MX is the vector with elements Xk,
1≤ k≤KM. The best linear predictor of ν based on MX is then ν̂M = αM + 𝛃′MMX, and the residual is rM = ν − ν̂M, where
the KM-dimensional vector 𝛃M with elements βkM for 1≤ k≤KM satisfies

𝛃M = [Cov (MX)]−1 MCov (𝛕) c =
[
MCov (X)M′]−1 MCov (𝛕) c (3)

and
αM =

(
c − M′𝛃M

)′ E (X) . (4)

For 1≤ k≤KM, the standardized regression coefficient corresponding to βkM is β*kM =σ(Mk)βMk/σ(ν), where Mk is
element k of MX.

As previously noted, application of BLP may encounter difficulties when subgroups of examinees must be considered
for fairness analysis. For example, gender, race, or ethnicity may be examined in standard testing programs to ensure
that specific groups of examinees are not unfairly affected by a particular method of analysis. This issue is a potential
concern whenever, for a grouping variable G with positive integer values no greater than some positive integer H > 1,
knowledge of G affects BLP. Let G= h with positive probability pG(h) for 1≤ h≤H. Then concern arises if the conditional
MSE E

([
ν − ν̂

]2 |G = h
)

given that G= h is not the minimum of the conditional MSE E([ν− a− b′X]2|G= h) for real a
and K-dimensional vector b (Haberman & Sinharay, 2013). Assume that the error ek and the true score τk

′ are sufficiently
uncorrelated to the grouping variable G for 1≤ k≤K and 1≤ k′ ≤K, so that E(ek|G= h)= 0 and E(ekτk

′|G= h)= 0 for
1≤ h≤H. Because E (ν) = E

(
ν̂
)

, the problem with conditional MSE arises if the conditional expectation E(r|G= h) of the
residual r = ν − ν̂ is not 0 for some positive integer h≤H. A measure of the size of this issue is provided by the variance
σ2 (E (r|G)) = ∑H

h=1 pG (h)
[
E (r|G = h)

]2 of the random variable E(r|G) with value E(r|G= h) if G= h and 1≤ h≤H.
In PBLP, a constant d≥ 1 is selected and ν̂d = αd + 𝛃′dX, αd real and 𝛃d a K-dimensional vector with elements βkd for
1≤ k≤K, are uniquely defined by the requirement that the residual rd = ν − ν̂d satisfies

E
(

r2
d

)
+ (d − 1) σ2 (E

(
rd|G)) = Ld, (5)

where Ld is the minimum of E([ν− a− b′X]2)+ (d− 1)E([E(ν− a− b′X|G)]2) for real a and K-dimensional vector b. The
case of d= 1 is the conventional case of BLP, so that ν̂1 = ν̂, α1 =α, and 𝛃1 = 𝛃. For d> 1, the penalty (d− 1)σ2(E(rd|G))
is assessed to balance the variability of E(rd|G) against the MSE MSEd = E

(
r2

d

)
.

To evaluate ν̂d, let E(X|G= h) be the conditional expectation of X given G= h, and let the conditional expectation
E(X|G) of X given G be the random vector with value E(X|G= h) if G= h and 1≤ h≤H. Let Cov(E(X| G))=Cov(E(𝛕| G))
be the covariance matrix of the conditional expectation E(𝛕|G)=E(X|G) of X given G. Then

𝛃d = [Cov (X) + (d − 1)Cov(E (X|G)]−1 [Cov (𝛕) + (d − 1)Cov (E (X|G))] c (6)

and
αd =

(
c − 𝛃d

)′ E (X) . (7)

The standardized coefficient corresponding to βkd is β*kd =σ(Xk)βkd/σ(ν) for 1≤ k≤K. If Cov(E(X| G)) is positive
definite, then, as d approaches ∞, 𝛃d converges to c, αd converges to 0, ν̂d converges to O, rd converges to ν−O, and, for
1≤ h≤H, E(rd|G= h) converges to 0 and E

(
ν̂d|G = h

)
converges to E(O|G= h). Yao et al. (2019) has provided a detailed

derivation of the PBLP method, including Equations 6 and 7.
In the penalty case, similar formulas apply. Thus the predictor ν̂Md = αMd + 𝛃′MdMX and the residual is rMd = ν − ν̂Md,

where the KM-dimensional vector 𝛃Md with elements βkMd for 1≤ k≤KK satisfies

𝛃Md = {M[Cov (X) + (d − 1)Cov(E (X|G)]M′}−1 {M
[
Cov (𝛕) + (d − 1)Cov (E (X|G))]} c (8)

and
αMd =

(
c − M′𝛃Md

)′ E (X) . (9)
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For 1≤ k≤KM, the standardized coefficient corresponding to βkMd is β*kMd =σ(Mk)βkMd/σ(ν). If c is M′cM for some
KM-dimensional vector cM, MCov(E(X| G))M′ is positive definite, and d approaches ∞, then 𝛃Md approaches cM, αMd
approaches 0, ν̂Md approaches O, rMd approaches ν−O, and, for 1≤ h≤H, E

(
ν̂Md|G = h

)
approaches E(O|G= h) and

E(rMd|G= h) approaches 0.
In the examples examined in this report, to each prompt j, 1≤ j≤ J, correspond 11 potential variables, 2 human holistic

scores Xj and XJ + j, and 9 essay features X2J + 9(j− 1)+ k, 1≤ k≤ 9. Thus K = 11 J. If all information is used and the symmetry
properties associated with the two holistic scores on each prompt are ignored, then M is the K by K identity matrix IK
and MX=X. If one human score and all feature scores are used for each prompt, then KM =K − J and M=M1, where
row k′ and column k of M1 is Mk′k1 for 1≤ k′ ≤KM and 1≤ k≤K, Mk′k1 = 1 if k′ = k≤ J or k′ = k− J and 2 J < k≤K,
and Mk′k1 = 0 otherwise. If one human score and no computer-generated features are used for each prompt, then KM = J,
M=M2, row k′ and column k of M2, 1≤ k′ ≤KM and 1≤ k≤K, is Mk′k2, Mk′k2 = 1 for k′ = k≤ J and Mk′k2 = 0 otherwise. If
both human scores are used for each prompt, symmetry properties are exploited, and no computer-derived information is
used, then KM = 2 J, M=M3, row k′ and column k of M3 is Mk′k3, Mk′k3 = 1/2 for k′ = k≤ J or k′ = k− J and J + 1≤ k≤ 2 J,
and Mk′k3 = 0 otherwise. These cases apply to TOEFL Writing and GRE Writing with J = 2 and to Praxis Writing with J = 1.

Both BLP and PBLP are applied to the two measurement models examined in Haberman et al. (2015). The first def-
inition involves accuracy of scoring. In the example with four human scores and 18 computer-derived essay features,
electronic scoring involves no errors in the sense that the computer program always gives the same feature values to the
same essay. As a consequence, the variances σ2(ek) of the errors ek are 0 for 5≤ k≤K = 20. In addition, all errors ek,
1≤ k≤ 4, are uncorrelated, σ2(e1)=σ2(e3), and σ2(e2)=σ2(e4). The other case involves accuracy of assessment, where the
prompts are regarded as drawn from pools of comparable prompts, so that the weighted average true score c1τ1 + c2τ2
can be regarded as the expected weighted average of human holistic scores among parallel tests. In this case, the variances
σ2(ek) can be assumed to be positive for 1≤ k≤K, for computers can be expected to give different feature scores to different
essays. The errors of essay feature variables may be correlated with one another; that is, the covariances Cov

(
ek, ek′

)
may

be nonzero if 1≤ k< k′ ≤ 20. The assumption (Haberman et al., 2015) is not needed that errors for different prompts are
uncorrelated. It is also assumed that Cov(e1, ek)=Cov(e3, ek) and Cov(e2, ek)=Cov(e4, ek) for 5≤ k≤ 20, σ2(e1)=σ2(e3),
σ2(e2)=σ2(e4), and Cov(e1, e2)=Cov(e3, e2)=Cov(e1, e4)=Cov(e3, e4). This model applies to TOEFL Writing and GRE
Writing.

If, as in Praxis Writing, only one prompt is considered in the writing assessment, K = 11, X1 equals the first holistic
score on the prompt, X2 is the second holistic score on the prompt, and X3 to X11 are the feature variables for this prompt.
If c is the 11-dimensional vector with elements c1 = 1 and ck = 0 for 2≤ k≤ 11, then ν= c′𝛕 is the true score τ1 of the first
holistic score. Given proper rater randomization, τ1 =τ2. In the case of accuracy of scoring, the variances σ2(ek) of the
errors ek are 0 for 3≤ k≤K = 11, the errors e1 and e2 are uncorrelated, and σ2(e1)=σ2(e2). Although available data do
not permit evaluation of accuracy of assessment, were such data attainable, the variances σ2(ek) can be assumed to be
positive for 1≤ k≤K, and the covariances Cov

(
ek, ek′

)
may be nonzero if 1≤ k< k′ ≤ 11. For human scores and essay

feature scores, Cov(e1, ek)=Cov(e2, ek) for 3≤ k≤ 11 and σ2(e1)=σ2(e2).

Proportional Reduction in Mean Squared Error Measures

To evaluate the quality of various sets of predictors, the PRMSE ρ2 = 1−MSE/σ2(ν) provides a measure of the effectiveness
of best linear prediction by the complete vector X. In other words, ρ2 is the coefficient of determination from prediction
of ν by the linear predictor ν̂ relative to prediction of ν by the constant E(ν) (Haberman, 2008). The coefficient ρ2 is
nonnegative and does not exceed 1. Larger values of ρ2 indicate more effective prediction. In the Applications section, ρ2

is applied to evaluate three sets of predictors. In examination of ρ2, the following equations are often helpful:

MSE = c′
{

Cov (𝛕) − Cov (𝛕) [Cov (X)]−1 Cov (𝛕)
}

c, (10)

and

ρ2 = c′Cov (𝛕) [Cov (X)]−1 Cov (𝛕) c
c′Cov (𝛕) c

. (11)

ETS Research Report No. RR-19-13. © 2019 Educational Testing Service 5
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In the more general framework, for the linear predictor ν̂M, the mean squared error MSEM = E
(

r2
M

)
, and the coefficient

of determination ρ2
M = 1 − MSEM∕σ2 (ν). Here

MSEM = c′
{

Cov (𝛕) − Cov (𝛕)M′ [Cov (MX)]−1 MCov (𝛕)
}

c (12)

and

ρ2
M = c′Cov (𝛕)M′ [Cov (MX)]−1 MCov (𝛕) c

c′Cov (𝛕) c
. (13)

For M equal to the K by K identity matrix, αM =α, 𝛃M = 𝛃, MSEM =MSE, and ρ2
M = ρ2. In general, ρ2

M ≤ ρ2.
When a penalty function is employed and d> 1, then MSE increases in typical cases. For the complete predictor X,

MSEd = E
(

r2
d

)
≥ MSE and σ2(E(rd|G))≤ σ2(E(r|G)), with equality only if the conditional expectation E(r|G) of the resid-

ual r from BLP is always 0. Similarly, MSEMd = E
(

r2
Md

)
≥ MSEM and σ2(E(rMd)) ≤ σ2(E(rM|G)), with equality only if

E(rM|G) is always 0. In general, MSEMd ≥MSEd, with equality only if ν̂d = ν̂Md. The proportional reductions in MSE are
ρ2

d = 1 − MSEd∕σ2 (ν) and ρ2
Md = 1 − MSEMd∕σ2 (ν). It must be the case that 0 ≤ ρ2

Md ≤ ρ2
d ≤ 1.

Estimation of Best Linear Predictor and Penalized Best Linear Predictor

To estimate α, αM, 𝛃, 𝛃M, MSE, MSEM, ρ2, and ρ2
M, the expectation E(X)=E(𝛕) and the covariance matrices Cov(X) and

Cov(𝛕) must be estimated. In addition, estimation of the corresponding parameters for a penalty function with d> 1
requires estimation of the conditional expectation E(X|G= h) of X given G= h and the conditional covariance matrix
Cov(E(X|G)). To ensure that estimated covariance matrices can be nonsingular, assume that the sample size n exceeds
the dimension K of X. To accommodate test takers who take the assessment more than once (repeaters), a slightly more
complex sampling procedure is required than is usually considered. Let the observations correspond to T test takers,
where T may be less than n. For test taker t from 1 to T, let N(t) be the set of observations corresponding to that test
taker, and, for each observation i, 1≤ i≤ n, let t(i) denote the corresponding test taker. Assume that the testing program
has a maximum number of times a test taker can take the assessment during the time period represented by the sample,
so that the maximum number of members of N(t) is bounded. For 1≤ t ≤T, let R(t) be the number of elements of N(t),
and let i*(i′, t), 1≤ i′ ≤R(t), be the observation that corresponds to the i′th test administration taken by test taker t. It is
assumed that T, R(t), 1≤ t ≤T, and i*(i′, t), 1≤ i′ ≤R(t) and 1≤ t ≤T, are all random variables. For observation i, let Xi
be a K-dimensional random vector with elements Xik, 1≤ k≤K, such that each Xi has the same distribution as X. For
1≤ t ≤T, let X̃t be the K by R(t) matrix with column i′, 1≤ i′ ≤R(t), equal to Xi∗(i′,t). Let the X̃t , 1≤ t ≤T, be independently
distributed, and let the conditional distribution of X̃t and X̃t′ given R(t)=R(t′) be the same if 1≤ t < t′ ≤T.

The estimate of the expectation E(X) is the sample mean

E (X) = n−1
n∑

i=1
Xi, (14)

and the covariance matrix Cov(X) is estimated by the (biased) sample covariance matrix

Cov (X) = n−1
n∑

i=1

[
Xi − E (X)

] [
Xi − E (X)

]′
. (15)

The vector E (X) has elements

E
(

Xk
)
= n−1

n∑
i=1

Xik (16)

for 1≤ k≤K, and Cov (X) has row k and column k′ equal to

Cov
(

Xk,Xk′
)
= n−1

n∑
i=1

[
Xik − E

(
Xk

)] [
Xik′ − E

(
Xk′

)]
(17)

for positive integers k and k′ not greater than K.
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In applications in this report, some modification of these formulas is needed due to failure to observe Xi(J + j), 1≤ j≤ J,
for most observations i, 1≤ i≤ n. The details of the modification are described in Appendix A.

Modifications are mostly important in this report for M= IK and M=M3. They help explore expected changes in
scoring performance if double human scoring is employed.

In the case of PBLP with d> 1, further estimation is needed. Let examinee i be in group Gi, and let E (X|G = h) be
the average of Xi for examinees i with Gi = h, 1≤ h≤H. It is assumed that pG (h), the fraction of observations i≤ n with
Gi = h, is positive for 1≤ h≤H. Then Cov(E(X| G)) has estimate

Cov (E (X|G)) = n−1
n∑

i=1

[
E
(

X|G = Gi
)
− E (X)

] [
E
(

X|G = Gi
)
− E (X)

]′

=
H∑

h=1
pG (h)

[
E (X|G = h) − E (X)

] [
E (X|G = h) − E (X)

]′
. (18)

Replacement of E (X|G = h) by E
(

X̃|G = h
)

for 1≤ h≤H and Cov (E (X|G)) by Cov
(

E
(

X̃|G)) is appropriate in
applications in this report in which Xi(J + j) is only available for a subset i in Uj for 1≤ j≤ J.

It is far more difficult to estimate the covariance matrix Cov(𝛕) of the vector 𝛕 of true scores. Two types of estimates are
considered in this report: scoring accuracy and assessment accuracy. In each of these cases, an estimate Cov (𝛕) of Cov(𝛕)
is provided, so that all desired parameters may be estimated by use of obvious substitutions such as E (X) or E

(
X̃
)

for

E(X), Cov (X) or Covm (X) for Cov(X), Cov (𝛕) for Cov(𝛕), E (X|G = h) or E
(

X̃|G = h
)

for E(X|G= h), 1≤ h≤H, and

Cov (E (X|G)) or Cov
(

E
(

X̃|G)) for Cov(E(X| G)).

Scoring Accuracy

In the case of scoring accuracy when only agreement samples are available for Xi(J + j, 1≤ j≤ J, the variance of measure-

ment error σ2(ej)=σ2(eJ + k) has unbiased estimate σ2
(

ej

)
= σ2

(
eJ+j

)
= σ2

(
Xj − XJ+j

)
∕2. Because Cov

(
ek, ek′

)
is 0

for k≠ k′ and for k or k′ greater than 2 J, estimation of Cov(e) is straightforward. Let Cov (e) be the diagonal matrix with
kth diagonal element σ2

(
ej

)
for 1≤ j≤ 2 J and other diagonal elements 0. Then Cov(𝛕) has estimate

Cov (𝛕) = Covm (X) − Cov (e) . (19)

Assessment Accuracy

Study of assessment accuracy typically involves use of repeater data for estimation of the covariance matrix of the vector
of true scores (Haberman et al., 2015). In addition to the K-dimensional random vector X, an additional K-dimensional
random vector X* with elements Xik*, 1≤ k≤K, represents test results that the same examinee would have had if that test
taker had taken a different parallel assessment instead of the one taken. Under this ideal condition, (X, X*) and (X*, X)
have the same distribution. It follows that Cov(𝛕) is the K by K matrix with row k and column k′ equal to Cov

(
Xk,Xk′∗

)
for positive integers k and k′ not greater than K. Under typical conditions, this approach to repeater data is difficult to
apply because repeater data are normally only available on a nonrepresentative subset of the complete sample and because
repeating a test may well affect performance. To treat this problem of unrepresentative sampling, MDIA may be used
(Haberman, 1984). In this approach, sample weights are employed so that the weighted sample of repeaters satisfies a
finite set of constraints on weighted averages. The sample MDIA weights minimize the sample discriminant information
subject to the given constraints. The discussion here follows Haberman (1984), Haberman et al. (2015), and Haberman
and Yao (2015), and the procedure is described in Appendix B.

Subgroup Analysis

The basic tool for examination of behavior of a linear predictor when applied to a subgroup is the conditional expectation
of the residual. For the general prediction vector X, the conditional expectation E(r|G= h) of the residual r given G= h
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has estimate E (r|G = h) = E (O|G = h) − 𝛃̂
′
E (X|G = h) for 1≤ h≤G, where 𝛃̂ denotes the estimated value of 𝛃. Sim-

ilarly, for d≥ 1, E(rd|G= h) has estimate E
(

rd|G = h
)
= E (O|G = h) − 𝛃̂

′
dE (X|G = h), where 𝛃̂d is the estimate of 𝛃d.

For the matrix M, E(rM|G= h) has estimate E
(

rM|G = h
)
= E (O|G = h) − 𝛃̂

′
ME (X|G = h), where 𝛃̂M estimates 𝛃M. For

the matrix M and d≥ 1, E
(

rMd|G = h
)
= E (O|G = h) − 𝛃̂

′
MdE (X|G = h) estimates E(rMd|G= h), where 𝛃̂Md estimates

𝛃Md. In all cases, it is desirable that the conditional expectation of residuals be small. In the case of agreement samples, X̃
replaces X.

A complication in the analysis involves the definition of what is a small value. An added complication is that in normal
testing practice, a predictor ν̂, ν̂d, ν̂M, or ν̂Md is converted to a scale score before a test result is reported. Conversion
procedures vary considerably even for tests within the same company, but one possibility to examine this issue involves
use of a standardized scaling associated with linear equating. For d≥ 1 and a matrix M, consider the following scaled
versions of ν̂d and ν̂Md:

ζ̂d = E (O) +
σ (O)
σ
(
ν̂d
) [

ν̂d − E (O)
]

(20)

and
ζ̂Md = E (O) +

σ (O)
σ
(
ν̂Md

) [
ν̂Md − E (O)

]
. (21)

Here the observed composite O has standard deviation σ(O)= [c′Cov(X)c]1/2, ν̂d has standard deviation σ
(
ν̂d
)
=[

𝛃′dCov (X)𝛃d
]1∕2, and ν̂Md has standard deviation

[
𝛃′MdMCov (X)M′𝛃Md

]1∕2. The scaled values ζ̂d and ζ̂Md have the
same mean E(O) and standard deviation σ(O) as the observed composite score O. In ideal situations, E

(
ζ̂d|G = h

)
=

E (O|G = h) for 1≤ h≤H. This result always holds for ζ̂M0d if KM = 1, M1k0 = 1 for 1≤ k≤ J, and M1k0 = 0 for
k> J, for the linear predictor ν̂M0d is a linear function of the observed composite score O. In general, each con-

ditional expectation E
(
ζ̂d|G = h

)
= E (O|G = h) if each expected conditional residual E(rd|G= h), 1≤ h≤H, is[

1 − σ
(
ν̂d
)
∕σ (O)

] [
E (O|G = h) − E (O)

]
. If Cov(E(X| G)) is positive definite and d approaches ∞, then E

(
ζ̂d|G = h

)
converges to E(O|G= h) for 1≤ h≤H. Each conditional expectation E

(
ζ̂Md|G = h

)
is E(O|G= h) if each expected

conditional residual E(rMd|G= h) is [1 − σ(ν̂Md∕σ (O)]
[
E (O|G = h) − E (O)

]
. If MCov(X| G))M′ is positive definite,

c=M′cM for a KM-dimensional vector cM, and d approaches ∞, then E
(
ζ̂Md|G = h

)
converges to E(O|G= h) for

1≤ h≤H. The convention is adopted that ζ̂ = ζ̂1 corresponds to the original BLP ν̂, and ζ̂M = ζ̂M1 corresponds to ν̂M.
Estimates of E

(
ζ̂d|G = h

)
and E

(
ζ̂Md|G = h

)
are obtained by substitution of E (X|G = h) or E

(
X̃|G = h

)
for E(X|G= h), Cov (X) or Covm

(
X̃
)

for Cov(X), Cov (𝛕) for Cov(𝛕), and Cov (E (X|G)) or Cov
(

E
(

X̃|G)) for
Cov(E(X| G)).

Applications

Data Summary

This study involves data collected from three large-scale assessments used to make high-stakes decisions, namely, TOEFL
Writing, GRE Writing, and Praxis Writing, administered by Educational Testing Service. Both TOEFL iBT and GRE writ-
ing tests include two essay prompts, and the portion of the Praxis writing assessment under consideration in this study
contains only one essay prompt. For TOEFL Writing, the independent prompt asks the test takers to express their opinions
on a subject, and the integrated prompt asks the test takers to integrate information from a reading source and a listening
source. In GRE Writing, test takers are asked to write an argumentative essay on a topic with reasons and supporting
evidence (issue) and an essay to evaluate an argument (argument). Despite the name, the argumentative prompt in Praxis
Writing is similar to the issue prompt in GRE Writing. The data set for each assessment was collected in different peri-
ods of time. Specifically, the TOEFL main sample consists of all essay responses collected from 1,006,554 examinees who
took TOEFL iBT tests between January 9 and December 20, 2015; the GRE main sample consists of responses randomly
selected from 194,851 test-takers’ essay responses between July 1, 2013, and June 30, 2016; and the Praxis main sample
consists of all responses of 149,713 examinees between October 6, 2014, and December 31, 2016.
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For all programs, each essay response was graded by a randomly chosen but trained human rater. For each prompt,
there is a predetermined percentage of essays that were randomly selected and scored by a second operational rater. This
sample is the agreement sample. Although the rate of double rating varied by program, in all cases, the agreement sample
was just a small portion of the full sample for each prompt. It is also noted that the sample sizes vary not only by different
testing programs but also by prompts. For TOEFL, the agreement sample contains 44,381 responses for the independent
prompt and 44,831 responses for the integrated prompt. For GRE, the agreement sample includes 8,988 responses for
the issue prompt and 8,306 for the argument prompt. The sample size of the agreement sample for Praxis Writing is
10,990. The data of repeaters who took the same test more than once were also selected in each prompt, and obviously
the repeater data were just a subsample of the main population: 168,595 for TOEFL, 4,739 for GRE, and 23,673 for Praxis,
respectively. Lastly, we also have subgroup information available for each data set under study, that is, 19 subgroups defined
for TOEFL, 17 for GRE, and 7 for Praxis. It is worthwhile noting that the subgroup compositions are characterized in
different ways by testing program. For TOEFL Writing, the subgroups are defined in terms of a combination of test region
(geographic location of where the test takes place) and native language information. For GRE Writing, the subgroups are
defined using test region for test takers outside the United States, and test takers in the United States are further divided
by ethnicity information into seven subgroups (e.g., White, Asian, Black, Hispanic). Finally, the subgroups are divided
based on ethnicity information for Praxis Writing.

In addition to human scores, we also obtained e-rater feature scores extracted from each essay. The e-rater engine uses
natural language processing techniques to extract information of essays to compute feature scores (Burstein et al., 2004).
In this study, we used nine e-rater feature scores in the prediction models (Attali et al., 2003; Attali & Burstein, 2006;
Burstein et al., 2004; Haberman & Sinharay, 2010) as follows:

1 grammar: minus the square root of the number of grammatical errors detected per word
2 usage: minus the square root of the number of usage errors detected per word
3 mechanics: minus the square root of the number of mechanics errors detected per word
4 vocabulary sophistication: minus the median Standard Frequency Index value of words not excluded by search

engines
5 word complexity: the average number of characters per word
6 syntactic variety: a measure of the diversity of syntactic structure of the sentences in an essay
7 development: the logarithm of the average number of words per discourse element
8 organization: the logarithm of the number of discourse elements
9 collocation-preposition: a measure of correctness of use of collocations and prepositions encountered in everyday

English vocabulary

Results of Applications

In all cases, ck = 0 for k> J and Xj, 1≤ j≤ J, was a human holistic score for prompt j. Three linear predictors of ν were
obtained with three selections of MX. Composite true score

∑J
k=1 ckτk was predicted by the BLP based on MX. The

following matrices were examined:

• Matrix 1 (M1): For each prompt, one human rating and nine e-rater features were used.
• Matrix 2 (M2): For each prompt, one human rating was used.
• Matrix 3 (M3): For each prompt, the average of two human ratings was used.

Two choices of ck, 1≤ k≤ J, were considered when J > 1, as is the case for TOEFL Writing and GRE Writing. The first
choice used equal weighting, so that each ck = J−1. In the second choice, ck is proportional to the inverse of the standard
deviation of the true score τk of Xk. If J = 1, as is the case for Praxis Writing, then c1 must be 1.

Results are reported for scoring accuracy in the section Results for Scoring Accuracy (Research Question 1) and for
assessment accuracy in the section Results for Assessment Accuracy (Research Question 1). Yao et al. (2019) presented the
results of PRMSE measures for different models; however, there are more substantial results to validate the psychometric
quality of computer-generated feature scores in the proposed BLP models that are worth disseminating. For this purpose,
the explicit explanation illustrated in these two sections well answers the first research question. The effectiveness of the
penalty function based on different strength of parameter d is examined in the section Subgroup Analyses Based on
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Penalized Best Linear Predictor Method (Research Question 2). Yao et al. (2019) gives the results of subgroup analyses in
the case of scoring accuracy for the three writing assessments. To provide a more complete picture, the section Subgroup
Analyses Based on Penalized Best Linear Predictor Method (Research Question 2) complements the analyses in Yao et al.
(2019) by adding the results for assessment accuracy as well as a thorough comparison between these two sets of results.

Results for Scoring Accuracy (Research Question 1)

In the study of scoring accuracy, the agreement samples are used for estimating the variance of the true scores and the
measurement errors. The estimates of the PRMSE ρM2 for all three tests and for both choices of weights (when J > 1, i.e.,
TOEFL and GRE) and only one weight (when J = 1, i.e., Praxis) indicate how accurate the tests measure the attribute of
interest.

With the three matrices M, for TOEFL Writing and GRE Writing, there are relatively small differences in estimated
PRMSEs for the two weighting selections. This situation is especially true for GRE Writing, where the two weights c1
and c2 are quite close (.5152 and .4848 for issue and argument prompts, respectively). The weights are .6126 and .3874
for independent and integrated prompts, respectively, in TOEFL Writing. In general, with matrix M2 (i.e., only the first
human score for each prompt as the predictor), the estimated PRMSE statistics are the lowest, that is, the values are
.8398 with equal weighting and .8271 with unequal weighting for TOEFL, .8528 with equal weighting and .8528 with
unequal weighting for GRE, and .7139 for Praxis. A comparison of M2 to M1 shows that using e-rater features provides an
appreciable increase in estimated PRMSE. With matrix M1 (i.e., the first human score and nine e-rater feature scores for
each prompt as the predictors), the estimated PRMSE statistics rise to .8864 with equal weighting and .8856 with unequal
weighting for TOEFL, .9184 with equal weighting and .9189 with unequal weighting for GRE, and .9300 for Praxis. A
comparison of M3 to M2 indicates the effectiveness of the employment of the second human rating. Note that, with matrix
M3 (i.e., the average of two human scores for each prompt as the predictor), the estimated PRMSE statistics further go up
to .9119 with equal weighting and to .9022 with unequal weighting for TOEFL, and to .9205 with equal weighting and to
.9205 with unequal weighting for GRE, but only increase to .8331 for Praxis. In the case of TOEFL Writing, M1 performs
less well than M3, whereas in GRE Writing, M1 yields results only slightly worse than for M3. However, the results for
Praxis Writing are somewhat different from the ones for TOEFL Writing and GRE Writing, for M1 clearly outperforms
the other two matrices in terms of estimated PRMSE. In this case, the employment of machine feature scores yields a
substantially higher PRMSE estimate compared to exclusive use of human scores (M2 and M3).

Estimated standardized partial regression coefficients can shed light on the relative importance of the predictors in
the proposed prediction models. As an illustration, consider TOEFL Writing. Table 1 shows the estimated standardized
regression coefficients for three matrices and two choices of weights. Results for equal weights show that, with M1, the
human ratings from the integrated prompt receive by far the highest weight of any of the predictors, followed by the
human ratings from the independent prompt.

Among the e-rater features, the development and organization features, especially the ones for the independent prompt,
receive much larger weights than the other features. Using additional human ratings (M3) does not appear to alter the
weights for the human ratings in either essay prompt, as is evident from the comparable weights between M2 and M3.
However, the weights for the human ratings on both prompts are notably decreased when e-rater features are added as
predictors. In particular, the weight for human ratings on the integrated prompt dropped nearly by half from M2 and
M3 to M1. With unequal weights, the general pattern of the relative weights for each predictor with different matrices is
similar to the results with equal weights. Nonetheless, because the standard deviations of τk for the two prompts are quite
different, when weights are unequal, estimated standardized regression coefficients for human ratings on the integrated
prompt are somewhat smaller and corresponding coefficients are somewhat larger on the independent prompt.

Comparable results for GRE Writing are shown in Table 2. For both weighting procedures, the human ratings from
the argument prompt receive the highest estimated standardized regression coefficients with M1. Interestingly, for both
tests, the human ratings on essay prompts that evaluate more complex, higher order skills (e.g., argumentation, reading
and listening), such as the integrated prompt in TOEFL Writing and the argument prompt in GRE Writing, have the
largest estimated standardized regression coefficients. In addition, similar to the results in TOEFL Writing, the estimated
standardized regression coefficient for the human ratings on the other prompt (issue) decreases substantially to nearly
half of the original value when e-rater features are added.
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Table 1 Estimated Standardized Regression Coefficients for Scoring Accuracy: TOEFL Writing

Weight Variable M1 M2 M3

Equal Human rating: Independent .2058 .3580 .3753
Human rating: Integrated .5521 .6814 .6846
Grammar: Independent .0678 – –
Usage: Independent .0487 – –
Mechanics: Independent .0438 – –
Vocabulary sophistication: Independent .0421 – –
Word complexity: Independent .0171 – –
Syntactic variety: Independent .0283 – –
Development: Independent .1110 – –
Organization: Independent .1263 – –
Collocation-preposition: Independent .0155 – –
Grammar: Integrated .0390 – –
Usage: Integrated .0136 – –
Mechanics: Integrated .0210 – –
Vocabulary sophistication: Integrated .0305 – –
Word complexity: Independent −.0065 – –
Syntactic variety: Integrated .0314 – –
Development: Integrated .1065 – –
Organization: Integrated .0961 – –
Collocation-preposition: Integrated .0085 – –

Unequal Human rating: Independent .2469 .4204 .4563
Human rating: Integrated .4809 .6210 .6067
Grammar: Independent .0781 – –
Usage: Independent .0573 – –
Mechanics: Independent .0542 – –
Vocabulary sophistication: Independent .0476 – –
Word complexity: Integrated .0223 – –
Syntactic variety: Independent .0291 – –
Development: Independent .1450 – –
Organization: Independent .1635 – –
Collocation-preposition: Independent .0193 – –
Grammar: Integrated .0414 – –
Usage: Integrated .0176 – –
Mechanics: Integrated .0201 – –
Vocabulary sophistication: Integrated .0341 – –
Word complexity: Integrated −.0086 – –
Syntactic variety: Integrated .0350 – –
Development: Integrated .0881 – –
Organization: Integrated .0729 – –
Collocation-preposition: Integrated .0093 – –

Note. With M1, the predictors are the first human score and nine e-rater feature scores for each prompt. With M2, the predictors only
include the first human score for each prompt. With M3, the predictor is the average of two human scores for each prompt.

Table 3 shows that Praxis Writing exhibits very different behavior than that seen in the other two tests. The estimated
standardized regression coefficient for human rating with M1 (.2069) is substantially smaller than the corresponding val-
ues with M2 (.8449) and M3 (.9217). Again, organization and development features appear to have the greatest importance
with M1, in which model the importance indeed exceeds that of human holistic scores. The reasons for this difference in
behavior for Praxis Writing merit comparison of the human-scoring processes of the three tests; however, this comparison
is beyond the scope of this report.

Results for Assessment Accuracy (Research Question 1)

Assessment accuracy was evaluated by use of repeater samples. MDIA was used to compensate for the unrepresentative
sampling of repeaters. In this case, the estimates of PRMSE statistics, for the two weighting choices for TOEFL Writing
and GRE Writing and one weighting case for Praxis Writing, imply how reliably the tests measure the construct of interest.
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Table 2 Estimated Standardized Regression Coefficients for Scoring Accuracy: GRE Writing

Weight Variable M1 M2 M3

Equal Human rating: Issue .2450 .5008 .5057
Human rating: Argument .3211 .5221 .5301
Grammar: Issue .0394 – –
Usage: Issue .0637 – –
Mechanics: Issue .0528 – –
Vocabulary sophistication: Issue .0333 – –
Word complexity: Issue .0386 – –
Syntactic variety: Issue .0359 – –
Development: Issue .1671 – –
Organization: Issue .1795 – –
Collocation-preposition: Issue .0302 – –
Grammar: Argument .0344 – –
Usage: Argument .0528 – –
Mechanics: Argument .0230 – –
Vocabulary sophistication: Argument .0213 – –
Word complexity: Argument .0117 – –
Syntactic variety: Argument .0463 – –
Development: Argument .1405 – –
Organization: Argument .1650 – –
Collocation-preposition: Argument .0239 – –

Unequal Human rating: Issue .2479 .5072 .5146
Human rating: Argument .3162 .5157 .5213
Grammar: Issue .0400 – –
Usage: Issue .0645 – –
Mechanics: Issue .0537 – –
Vocabulary sophistication: Issue .0337 – –
Word complexity: Issue .0398 – –
Syntactic variety: Issue .0360 – –
Development: Issue .1754 – –
Organization: Issue .1887 – –
Collocation-preposition: Issue .0302 – –
Grammar: Argument .0344 – –
Usage: Argument .0530 – –
Mechanics: Argument .0227 – –
Vocabulary sophistication: Argument .0209 – –
Word complexity: Argument .0110 – –
Syntactic variety: Argument .0458 – –
Development: Argument .1339 – –
Organization: Argument .1569 – –
Collocation-preposition: Argument .0238 – –

Note. With M1, the predictors are the first human score and nine e-rater feature scores for each prompt. With M2, the predictors only
include the first human score for each prompt. With M3, the predictor is the average of two human scores for each prompt.

Generally, the estimates of PRMSE in case of assessment accuracy are consistently lower than the estimates in case of scor-
ing accuracy. This phenomenon has been observed in earlier studies (Haberman et al., 2015; Haberman & Yao, 2015). The
underlying reasons are that scoring accuracy only involves the examination of the scoring qualities of human judgment
on the present test; however, assessment accuracy reflects not only variations in examinee responses to different prompts
but also variations in examinee learning between assessments taken at different times. As a consequence, it is common to
have lower PRMSE values in case of assessment accuracy when compared to PRMSE measures in case of scoring accuracy.

Despite the lower estimates, the overall patterns of the estimated PRMSE statistics in the case of assessment accu-
racy are similar to those in the case of scoring accuracy. With M2, the estimated PRMSE measures for all three test
are the lowest (i.e., .7077 with equal weighting and .7064 with unequal weighting for TOEFL, .7632 with equal weight-
ing and .7632 with unequal weighting for GRE, and .4410 for Praxis). The employment of nine e-rater feature scores
(M3), compared to M2, leads to a substantial increase in the estimated PRMSE measures for all three tests, that is, .8065
with equal weighting and .8135 with unequal weighting for TOEFL, .8564 with equal weighting and .8567 with unequal

12 ETS Research Report No. RR-19-13. © 2019 Educational Testing Service



L. Yao et al. Prediction of Writing True Scores

Table 3 Estimated Standardized Regression Coefficients for Scoring Accuracy: Praxis Writing

Variable M1 M2 M3

Human rating .2069 .8449 .9217
Grammar .0551 – –
Usage .0397 – –
Mechanics .1097 – –
Vocabulary sophistication .0404 – –
Word complexity .1578 – –
Syntactic variety .0401 – –
Development .6268 – –
Organization .8363 – –
Collocation-preposition .0160 – –

Note. With M1, the predictors are the first human score and nine e-rater feature scores for each prompt. With M2, the predictors only
include the first human score for each prompt. With M3, the predictor is the average of two human scores for each prompt.

weighting for GRE, and .6002 for Praxis. In addition, two human raters per prompt (M3) yields notably better results
than those for one human rater per prompt (M2). The estimates of PRMSEs with M3 are .8289 with equal weighting
and .8275 with unequal weighting for TOEFL, .8657 with equal weighting and .8657 with unequal weighting for GRE,
and .6121 for Praxis. Using e-rater features and one human rating per prompt (M1) was a bit less effective than double
human scoring (M3) in all cases, although much more effective than just single human scoring. The Praxis situation
was strikingly different for assessment accuracy than for scoring accuracy, for double human scoring (M3) becomes
more effective than e-rater features and single human scoring (M1). The relatively low PRMSEs for Praxis reflect use of
only one prompt.

Lastly, the results of the estimated PRMSE values suggest that, for both tests, the choice of weighting procedure has
little to no impact on the estimates of PRMSE. Similar to the scoring accuracy results, the weights ck are rather even for
GRE Writing: .5103 and .4897 for issue and argument prompts, respectively. Comparable values for TOEFL Writing are
.5998 (independent) and .4002 (integrated).

For detailed information, Table 4 gives the estimated standardized regression coefficients for TOEFL Writing with three
matrices M for both equal and unequal weighting of prompts.

Comparable results for GRE Writing are presented in Table 5. The general pattern of the relative contributions of each
predictor for three matrices M, regardless of whether equal or unequal weights are employed, is highly similar to the
results for scoring accuracy. That is, for both tests, small differences are found between M2 and M3 in terms of the relative
weights for the human ratings for the two prompts, adding e-rater features in M1 substantially reduces the weights for
human ratings, and organization and development receive the highest weights among all e-rater features. As in the case of
scoring accuracy, the human ratings on the less complex writing prompt (i.e., independent for TOEFL Writing and issue
for GRE Writing) exhibit a larger decrease in weight for M1 than do the human ratings on the other prompt.

Comparison of standardized regression coefficients for Praxis Writing in Tables 3–6 indicates roughly comparable rel-
ative contributions of the single human score and the essay features despite the somewhat different results for comparison
of M1 and M2 for scoring accuracy and for assessment accuracy.

Subgroup Analyses Based on Penalized Best Linear Predictor Method (Research Question 2)

To fully answer the second research question, this section provides the results based on the PBLP method in case of assess-
ment accuracy and M=M1, to complement the information in Yao et al. (2019) that presented the results of scoring
accuracy only for illustration. As in Haberman et al. (2015), both definitions of scoring accuracy and assessment accu-
racy are meaningful, hence this section mainly presents the results of assessment accuracy to supplement the subgroup
analyses described in Yao et al. (2019). Similar to Yao et al., we still evaluate the effectiveness of the penalty function by
two measures: the comparison of the estimate of the variance σ2 (E

(
rM1d|G)) for d> 1 and d= 1 (no penalty) and the

comparison of the estimated differences between E
(
ζ̂M1d|G = h

)
and E(O|G= h) for 1≤ h≤H and for both d> 1 and

d= 1. In Appendix C, Tables C1–C8 summarize the results. In addition, Figures 1 and 2 graphically illustrate the results
shown in Tables C4 and C5.
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Table 4 Estimated Standardized Regression Coefficients for Assessment Accuracy: TOEFL Writing

Weight Variable M1 M2 M3

Equal Human rating: Independent .1900 .4296 .4496
Human rating: Integrated .3717 .5367 .5545
Grammar: Independent .0912 – –
Usage: Independent .0701 – –
Mechanics: Independent .0559 – –
Vocabulary level: Independent .0563 – –
Word complexity: Independent .0083 – –
Syntactic variety: Independent .0603 – –
Development: Independent .1347 – –
Organization: Independent .1445 – –
Collocation-preposition: Independent .0253 – –
Grammar: Integrated .0814 – –
Usage: Integrated .0443 – –
Mechanics: Integrated .0317 – –
Vocabulary level: Integrated .0580 – –
Word complexity: Independent .0121 – –
Syntactic variety: Integrated .0264 – –
Development: Integrated .1468 – –
Organization: Integrated .1461 – –
Collocation-preposition: Integrated .0006 – –

Unequal Human rating: Independent .2009 .6494 .6796
Human rating: Integrated .3459 .8113 .8382
Grammar: Independent .0930 – –
Usage: Independent .0764 – –
Mechanics: Independent .0613 – –
Vocabulary level: Independent .0573 – –
Word complexity: Integrated .0094 – –
Syntactic variety: Independent .0620 – –
Development: Independent .1422 – –
Organization: Independent .1563 – –
Collocation-preposition: Independent .0261 – –
Grammar: Integrated .0855 – –
Usage: Integrated .0478 – –
Mechanics: Integrated .0350 – –
Vocabulary level: Integrated .0588 – –
Word complexity: Integrated .0103 – –
Syntactic variety: Integrated .0311 – –
Development: Integrated .1398 – –
Organization: Integrated .1341 – –
Collocation-preposition: Integrated .0019 – –

Note. With M1, the predictors are the first human score and nine e-rater feature scores for each prompt. With M2, the predictor is only
the first human score for each prompt. With M3, the average of two human scores for each prompt is the predictor.

Tables C1–C3 record several measures to evaluate the effectiveness of the PBLP method, in terms of the estimated
variance of the observed composite score σ2(O), the estimated MSE for M1 as MSEM1d based on penalty multiplier d− 1,
the estimated variance of the conditional residual expectation σ2 (E

(
rM1d|G)), and the estimated PRMSE for M1, ρ2

M1d.
Note that when d= 1, there is no penalty, in which case, PBLP reduces to the regular BLP. Therefore the ρ2

M1d measures
when d= 1, for each assessment studied, in Tables C1–C3 are the same as the estimated PRMSE measures when M1 is
assessed.

From Tables C1–C3, we observe that as the penalty strength d increases, the estimated values σ2 (E
(

rM1d|G)) go down
substantially for all three assessments. Meanwhile, the estimated values of the PRMSE ρ2

M1d for an assessment dropped.
However, the PRMSE ρ2

M1d remains above .8000 when the penalty multiplier d goes up to 4 or 5 for TOEFL Writing, and
remains beyond .7500 even when d reaches 100. For GRE Writing, the PRMSE measure only drops by about 0.03 points
when the penalty multiplier d increases from 1 to 100, whereas the estimated values σ2 (E

(
rM1d|G)) go down consider-

ably. A similar compensatory pattern is observed for Praxis Writing. It is also evident that the two sets of weighting, either
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Table 5 Estimated Standardized Regression Coefficients for Assessment Accuracy: GRE Writing

Weight Variable M1 M2 M3

Equal Human rating: Issue .2283 .4993 .5116
Human rating: Argument .2335 .4683 .4814
Grammar: Issue .0294 – –
Usage: Issue .0936 – –
Mechanics: Issue .0715 – –
Vocabulary level: Issue .0623 – –
Word complexity: Issue .0139 – –
Syntactic variety: Issue .0551 – –
Development: Issue .1006 – –
Organization: Issue .1054 – –
Collocation-preposition: Issue .0614 – –
Grammar: Argument .0680 – –
Usage: Argument .0729 – –
Mechanics: Argument .0311 – –
Vocabulary level: Argument .0271 – –
Word complexity: Argument .0247 – –
Syntactic variety: Argument .0639 – –
Development: Argument .1554 – –
Organization: Argument .1592 – –
Collocation-preposition: Argument .0175 – –

Unequal Human rating: Issue .2282 .5004 .5134
Human rating: Argument .2325 .4672 .4796
Grammar: Issue .0294 – –
Usage: Issue .0942 – –
Mechanics: Issue .0713 – –
Vocabulary level: Issue .0620 – –
Word complexity: Issue .0144 – –
Syntactic variety: Issue .0549 – –
Development: Issue .1028 – –
Organization: Issue .1077 – –
Collocation-preposition: Issue .0614 – –
Grammar: Argument .0681 – –
Usage: Argument .0732 – –
Mechanics: Argument .0316 – –
Vocabulary level: Argument .0272 – –
Word complexity: Argument .0243 – –
Syntactic variety: Argument .0639 – –
Development: Argument .1547 – –
Organization: Argument .1578 – –
Collocation-preposition: Argument .0171 – –

Note. With M1, the predictors are the first human score and nine e-rater feature scores for each prompt. With M2, the predictor is only
the first human score for each prompt. With M3, the average of two human scores for each prompt is the predictor.

equal weighting or unequal weighting, result in similar trends for TOEFL and GRE tests. More importantly, compared
to the results of scoring accuracy reported in Yao et al. (2019), the overall patterns in case of assessment accuracy are
quite consistent, except for the lower value of ρ2

M1d and more drop as d increases. On the whole, similar to Yao et al., this
supplementary information based on assessment accuracy well demonstrates the trade-off of the PBLP approach between
the accuracy and the fairness as d increases, meanwhile keeping the overall accuracy of BLP. It is also noticeable that when
d= 4 or d= 5, the results start becoming stable, whereas when d turns to two digits, the changes are quite small within
most of subgroups.

Tables C4–C8 present the results of assessment accuracy for TOEFL Writing, GRE Writing, and Praxis Writing, respec-
tively, for comparison of the estimated values of E

(
ζ̂M1d|G = h

)
and the estimated values of E(O|G= h) to assess the

impact on subgroup differences when adding computer-generated essay features in the prediction model. The subgroups
are not explicitly identified in accordance with policy of the data sources, so we name the subgroups by numerical numbers
as in Yao et al. (2019), although the sample sizes of each subgroup are recorded in detail. Besides, we provide Figures 1
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Table 6 Estimated Standardized Regression Coefficients for Assessment Accuracy: Praxis Writing

Variable M1 M2 M3

Human rating .1461 .6641 .7842
Grammar .0748 – –
Usage .0551 – –
Mechanics .1657 – –
Vocabulary level .0674 – –
Word complexity .1357 – –
Syntactic variety .0521 – –
Development .5273 – –
Organization .6166 – –
Collocation-preposition −.0160 – –

Note. With M1, the predictors are the first human score and nine e-rater feature scores for each prompt. With M2, the predictor is only
the first human score for each prompt. With M3, the average of two human scores for each prompt is the predictor.
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Figure 1 Estimated mean differences for assessment accuracy: TOEFL Writing, equal weights.

and 2 to show the results in Tables C4 and C5 by graphic demonstration. Similar to Yao et al. (2019), the results in Tables
C4 and C5 show that the magnitude of the absolute mean differences between E

(
ζ̂M1d|G = h

)
and E(O|G= h) for the

majority of the subgroups tends to reduce as the penalty parameter d goes up. The effectiveness of the penalty function
has similar impact for both GRE Writing and Praxis Writing, as seen in Tables C6–C8. Consistent with previous results,
the two ways of weighting strategies yield similar results in TOEFL Writing and GRE Writing. It is also verified that this
part of the results becomes stable when d= 4 or d= 5; especially when d turns to two digits, the changes in the magnitude
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Figure 2 Estimated mean differences for assessment accuracy: TOEFL Writing, unequal weights.

are quite small within most subgroups. In a more direct way, the figures illustrate that the initial large mean score differ-
ence (when d= 1 with no penalty at the beginning) among most subgroups tends to diminish substantially as d increases.
Moreover, this effect is most clear in subgroups with relative large size that have relatively large initial mean score differ-
ences. However, compared to the results of scoring accuracy in Yao et al., the magnitude of mean score differences based
on assessment accuracy are comparatively larger, as seen in Tables C4–C8.

Based on the results of PBLP in the case of scoring accuracy in Yao et al. (2019) and the results of PBLP in the case of
assessment accuracy reported in this section, the proposed PBLP method is shown to effectively treat the subgroup biases,
for all three testing programs studied. Lastly, it is worthwhile concluding that there is an obvious trade-off between the
accuracy and the fairness of the PBLP method due to increasing d, for which we do not have an universal rule to determine
the optimal d and the selection fully depends on balance of accuracy and fairness.

Discussion

This report, in great detail, describes the methodology of the BLP approach developed in Haberman et al. (2015) and
a modified version of the PBLP approach proposed in Yao et al. (2019) to treat subgroup biases. This report gives full
accounts of the results of the applications of these methodologies to three ETS operational testing programs that use
automated scoring more extensively than what was available in Haberman et al. (2015). This report can further serve as
supplementary material to Yao et al. (2019). In the case of BLP, compared to the study of Haberman et al. (2015), the
BLP approach is flexible in terms of the number of writing prompts in an assessment. For the data studied, two prompts
were used in TOEFL Writing and GRE Writing, while one essay prompt was used in Praxis Writing. In the case of PBLP,
in addition to the results of applications described in Haberman et al. (2015), we added another set of results in the
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case of assessment accuracy for the subgroup analyses for demonstrating the full picture of the effectiveness of PBLP
in improving the population invariance. To be more specific, this report mainly addressed two research questions. One
question related to the performance of the BLP model using human and machine features compared to all-human scor-
ing in terms of scoring and assessment accuracy, and the second question concerned the reduction of subgroup effects
with PBLP.

We compared three alternative predictor sets. For the TOEFL Writing and GRE Writing, analysis also varied in two
ways according to the weighting strategy for the two essay prompts. The models were evaluated and compared based on
scoring and assessment accuracy (Research Question 1) and deviation from population invariance (Research Question
2). For scoring accuracy, agreement samples were used for the estimation of the variance of the measurement errors.
Assessment accuracy was studied by the use of repeater data weighted by MDIA, as in Haberman (1984).

The results, consistently for all three testing programs, revealed that using two human scores per prompt (M3)
produced much greater scoring and assessment accuracy than using only one human score per prompt (M2). In a similar
manner, using automated essay features and one human rating for each essay prompt (M1) substantially outperformed
using only one human score (M2), in terms of both scoring accuracy and assessment accuracy, for all three tests. The
picture for comparison of computer-generated essay features and one human score (M1) and double human scoring (M3)
was somewhat more complex. For TOEFL Writing, double human scoring dominated for both scoring and assessment
accuracy. The dominance for scoring accuracy increased as steps were taken to reduce subgroup discrepancies. For
GRE Writing, results for M1 and M3 were rather close, although double human scoring dominated for both scoring
accuracy and assessment accuracy. Domination for scoring accuracy was increased as more effort was made to treat
subgroup effects. For Praxis Writing, double human scoring was dominated strongly by the combination with M1 of
computer-generated features and single human scoring; however, double human scoring had a small advantage for
assessment accuracy.

This report additionally supplements Yao et al. (2019) by providing the results of subgroup analyses in the case of
assessment accuracy. Similar to the results of scoring accuracy, the between-group mean variance reduces when the
penalty parameter increases, which suggests better population invariance. On the other hand, the mean differences
between scaled predicted writing true scores on the subgroups resulting from PBLP models and the observed composite
score based on the base model (only human holistic scores without any penalty) tended to diminish as the penalty
parameter increased. The phenomenon is most evident for the subgroups that had initial large mean differences prior
to the application of the penalty function. Thus it is well verified that the proposed PBLP method effectively treated
subgroup biases related to the interaction of the machine feature scores and the demographic characteristics of the
examinees. Although the overall patterns of the results based on assessment accuracy are similar to those results
based on scoring accuracy shown in Yao et al., some difference still exists, such as lower value of ρ2 and more drop
of ρ2 as d rises. The added information in this report discloses the full picture of how the PBLP method treats the
subgroup biases without losing overall accuracy, either in the case of scoring accuracy or in the case of assessment
accuracy.

Regression coefficients for scoring accuracy are not the same as those in assessment accuracy. Space limitations prevent
a thorough examination of this issue here, but it should be noted that results from use of scoring accuracy as a criterion
were evaluated in terms of the criterion of assessment accuracy and results from use of assessment accuracy as a criterion
were evaluated in terms of the criterion of scoring accuracy. For the data under study, results were quite robust, except that
rescaling is appropriate due to the difference in PRMSE for scoring accuracy and for assessment accuracy. No guarantee
exists that all data will behave in this fashion.

However, some caveats should be noted. In traditional assessments, Cronbach’s alpha is commonly used to evaluate
assessment reliability without use of repeater data. This approach requires multiple prompts, so it certainly does not apply
to Praxis Writing. Even for TOEFL Writing and GRE Writing, two prompts is not entirely satisfactory. Nonetheless, this
traditional approach is worth consideration when the number J of items is larger. Use of Cronbach’s alpha is even more
challenging for TOEFL Writing, for there are significant issues due to quite different constructs measured and due to
unequal variances of responses for the two prompts. There is a further issue not discussed in the report: Rater reliability for
human scorers is much better for the integrated prompt when compared to the independent prompt. As in all approaches
with repeater data, caution must always be exercised in interpreting results. Even with MDIA, concern must exist that
sampling bias has not been entirely corrected by weighting. This situation is most serious when sampling bias is largest.
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On the whole, the results in this study show the added value of using machine features to predict composite writing
true scores and effective use of a penalty function to achieve greater population invariance. Finally, it should be noted
that the suggested scoring methods are not limited to writing assessments. They have general practical implications for
testing programs that intend to use automated scoring capabilities or score augmentation for score reporting, especially
whenever subgroup biases need to be treated.
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Appendix A: Modification of Formulas for Estimation of Best Linear Predictor
and Penalized Best Linear Predictor

We fail to observe Xi(J + j), 1≤ j≤ J, for most observations i, 1≤ i≤ n. Instead, for prompt j, 1≤ j≤ J, a subsample Uj with
uj > 0 members is obtained from the observations 1≤ i≤ n. In typical cases, uj is much smaller than n. Only for observa-
tions i in the subsample Uj is the second human rating Xi(J + j) observed. Because σ2(XJ + j)=Cov(XJ + j, XJ + j)=Cov(Xj,
Xj)=σ2(Xj), the variance σ2(Xj −XJ + j)= 2[Cov(Xj, Xj)−Cov(XJ + j, Xj)] of the difference Xj −XJ + j has the unbiased
estimate

σ2
(

Xj − XJ+j

)
=
(

uj

)−1 ∑
i∈Uj

(
Xij − Xi(J+j)

)2
. (A1)
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Because E(Xj)=E(XJ + j) for 1≤ j≤ J, and Cov(Xj, Xk)=Cov(XJ + j, Xk) for 1≤ j≤ J and 1≤ k≤K such that k is neither
j nor J + j, the following practices are adopted. Let X̃i, 1≤ i≤ n, be the vector with K elements X̃ik, 1≤ k≤K, such that
X̃ik = Xik for 1≤ k≤ J and 2 J < k≤K and X̃ik = Xi(k−J) for J < k≤ 2 J. Then E (X) is replaced by E

(
X̃
)

, so that E
(

X̃
)

has

expectation E(X). Let D (X) be the K by K matrix with elements Dkk′ (X) for 1≤ k≤K and column k′, 1≤ k′ ≤K, such that
Dkk′ (X) = 0 if k or k′ is greater than 2 J or |k− k′| is not J and Dj(J+j) (X) = D(J+j)j (X) = 1

2
σ2

(
Xj − XJ+j

)
for 1≤ j≤ J.

Then Cov (X) is replaced by Covm (X) = Cov
(

X̃
)
− D (X). This substitution is made because Covm (X) has expectation

Cov(X).

Appendix B: Estimation of Minimum Discriminant Information Adjustment Weights

To describe the procedure, for 1≤ i≤ n, let Si be 1 if R(t(i)) > 1 and i = i*(1, t(i)). If Si = 1, let i2(i) be i*(2, t(i)), the
observation for the second time test taker t(i) takes the assessment. Let U be the set of examinees i with Si = 1, and let U
have nU elements. Assume that the expectation of nU/n approaches a positive constant as the sample size n becomes large.
The sample weights wi, i in U, are selected so that the weighted sample of

(
Xi,Xi2(i)

)
, i in U, has a distribution that shares

many features that should be associated with the distribution of (X, X*), even though the repeater observations are not
representative. For this purpose, Q-dimensional random variables Yi, i in U, and Zi, 1≤ i≤ n, are defined such that Yi is a
function of

(
Xi,Xi2(i)

)
and Zi is a function of Xi. The weights wi, i in U, are selected to minimize the sample discriminant

information −n−1
U

∑
i∈U wi log

(
wi
)

subject to the constraints

n−1
U

∑
i∈U

wi = 1 (B1)

and

n−1
U

∑
i∈U

wiYi = E (Z) = n−1
n∑

i=1
Zi. (B2)

In a variation on Haberman et al. (2015), let the vector consisting of the initial K elements of Yi be Xi, and let the
same condition apply to Zi. Let the next K(K + 1)/2 elements of Yi and the next K(K + 1)/2 elements of Zi be XikXik

′,
1≤ k≤ k′ ≤K. Then let the next K(K + 1)/2 elements of Yi be Xi2(i))kXi2(i)k′∗ for 1≤ k≤ k′ ≤K, and let the next K(K + 1)/2
elements of Zi be XikXik

′ for 1≤ k≤ k′ ≤K. Next, let the next K(K − 1)/2 elements of Yi be XikXi2(i)k′ − Xik′Xi2(i)k for
1≤ k< k′ ≤K, and let the corresponding elements of Zi be 0. Let the final H − 1 elements of Yi and the final H − 1 elements
of Zi be δh(Gi), 1≤ h≤H − 1, where δh(h′) is 1 for real h= h′, and 0 otherwise. The resulting weights wi lead to the estimate

Cov (𝛕) = Cov
(

X,X∗
)
= n−1

U

∑
i∈U

wi

[
Xi − E (X)

] [
Xi2(i) − E (X)

]′
(B3)

of Cov(𝛕). The constraints of MDIA imply that Cov (𝛕) is symmetric:

n−1
U

∑
i∈U

wiXi = n−1
U

∑
i∈U

wiXi2(i) = E (X) , (B4)

n−1
U

∑
i∈U

wi

[
Xi − E (X)

] [
Xi − E (X)

]′
= n−1

U

∑
i∈U

wi

[
Xi2(i) − E (X)

] [
Xi2(i) − E (X)

]′

= Cov (X) , (B5)

and
n−1

U

∑
i∈U

wiδh
(

Gi
)
= pG (h) , 1 ≤ h ≤ H. (B6)

When agreement samples are involved, MDIA uses X̃i, 1≤ i≤ n, instead of Xi, 1≤ i≤ n, and the definition of Cov (𝛕)
uses X̃i instead of Xi
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Appendix C: Additional Tables

Table C1 Estimated Parameters for Penalized Best Linear Predictor for TOEFL Writing: Assessment Accuracy

Weight d σ2(O) MSEM1d ρ2
M1d σ2

(
E
(

rM1d
|G))

Equal 1 0.4761 0.0921 0.8065 0.0038
2 0.4761 0.0926 0.8055 0.0027
3 0.4761 0.0935 0.8036 0.0021
4 0.4761 0.0945 0.8016 0.0017
5 0.4761 0.0954 0.7995 0.0014

10 0.4761 0.0994 0.7913 0.0008
20 0.4761 0.1042 0.7811 0.0004
30 0.4761 0.1072 0.7748 0.0003
40 0.4761 0.1094 0.7702 0.0002
50 0.4761 0.1111 0.7667 0.0002
60 0.4761 0.1124 0.7639 0.0001
70 0.4761 0.1136 0.7614 0.0001
80 0.4761 0.1146 0.7594 0.0001
90 0.4761 0.1154 0.7575 0.0001

100 0.4761 0.1162 0.7558 0.0001
Unequal 1 0.4376 0.0816 0.8135 0.0043

2 0.4376 0.0822 0.8122 0.0030
3 0.4376 0.0832 0.8098 0.0023
4 0.4376 0.0844 0.8072 0.0019
5 0.4376 0.0854 0.8048 0.0016

10 0.4376 0.0898 0.7948 0.0008
20 0.4376 0.0950 0.7828 0.0004
30 0.4376 0.0983 0.7755 0.0003
40 0.4376 0.1006 0.7702 0.0002
50 0.4376 0.1023 0.7662 0.0002
60 0.4376 0.1038 0.7629 0.0002
70 0.4376 0.1050 0.7601 0.0001
80 0.4376 0.1060 0.7577 0.0001
90 0.4376 0.1070 0.7556 0.0001

100 0.4376 0.1078 0.7537 0.0001

Note. No penalty is assessed if d = 1.

Table C2 Estimated Parameters for Penalized Best Linear Predictor for GRE Writing: Assessment Accuracy

Weight d σ2(O) MSEM1d ρ2
M1d σ2

(
E
(

rM1d
|G))

Equal 1 0.4965 0.0713 0.8564 0.0036
2 0.4965 0.0720 0.8550 0.0020
3 0.4965 0.0729 0.8532 0.0013
4 0.4965 0.0737 0.8516 0.0010
5 0.4965 0.0743 0.8504 0.0008

10 0.4965 0.0763 0.8463 0.0005
20 0.4965 0.0786 0.8418 0.0003
30 0.4965 0.0802 0.8386 0.0002
40 0.4965 0.0815 0.8359 0.0002
50 0.4965 0.0827 0.8335 0.0002
60 0.4965 0.0838 0.8313 0.0002
70 0.4965 0.0848 0.8293 0.0001
80 0.4965 0.0857 0.8274 0.0001
90 0.4965 0.0866 0.8256 0.0001

100 0.4965 0.0874 0.8239 0.0001
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Table C2 Continued

Weight d σ2(O) MSEM1d ρ2
M1d σ2

(
E
(

rM1d
|G))

Unequal 1 0.4961 0.0711 0.8567 0.0037
2 0.4961 0.0718 0.8554 0.0020
3 0.4961 0.0727 0.8535 0.0013
4 0.4961 0.0735 0.8519 0.0010
5 0.4961 0.0741 0.8506 0.0008

10 0.4961 0.0762 0.8465 0.0005
20 0.4961 0.0784 0.8420 0.0003
30 0.4961 0.0800 0.8388 0.0002
40 0.4961 0.0813 0.8362 0.0002
50 0.4961 0.0824 0.8338 0.0002
60 0.4961 0.0835 0.8317 0.0002
70 0.4961 0.0845 0.8297 0.0001
80 0.4961 0.0854 0.8278 0.0001
90 0.4961 0.0863 0.8261 0.0001

100 0.4961 0.0871 0.8244 0.0001

Note. No penalty is assessed if d = 1.

Table C3 Estimated Parameters for Penalized Best Linear Predictor for Praxis Writing: Assessment Accuracy

d σ2(O) MSEM1d ρ2
M1d σ2

(
E
(

rM1d
|G))

1 0.2480 0.0992 0.6002 0.0026
2 0.2480 0.0993 0.5997 0.0023
3 0.2480 0.0996 0.5984 0.0022
4 0.2480 0.1001 0.5964 0.0019
5 0.2480 0.1007 0.5941 0.0018
10 0.2480 0.1043 0.5796 0.0012
20 0.2480 0.1136 0.5510 0.0007
30 0.2480 0.1169 0.5287 0.0004
40 0.2480 0.1211 0.5119 0.0003
50 0.2480 0.1243 0.4989 0.0002
60 0.2480 0.1268 0.4886 0.0002
70 0.2480 0.1289 0.4803 0.0001
80 0.2480 0.1306 0.4734 0.0001
90 0.2480 0.1320 0.4677 0.0001
100 0.2480 0.1332 0.4627 0.0001

Note. No penalty is assessed if d = 1.
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Table C4 Estimated Mean Score Differences (Equal Weights) for Assessment Accuracy: TOEFL Writing

d

Subgroup 1 2 3 4 5 10 20 30 40 50 60 70 80 90 100

1 (15,592) .006 −.014 .027 −.034 −.039 −.049 −.047 −.042 −.038 −.034 −.031 −.028 −.026 .024 .022
2 (4,374) .044 .028 .018 .012 .007 −.001 −.001 .0008 .003 .005 .006 .007 .008 .009 .010
3 (67,464) .046 .030 .020 .014 .009 −.004 −.011 −.013 −.014 −.015 −.015 −.015 −.015 −.015 −.015
4(14,615) .071 .057 .047 .041 .037 .026 .019 .017 .015 .015 .014 .013 .013 .013 .012
5 (47,016) .019 .016 .014 .013 .012 .008 .005 .003 .002 .001 .0009 .0004 .0001 −.0003 −.0006
6 (11,582) .031 .026 .023 .020 .019 .014 .011 .009 .007 .006 .006 .005 .005 .004 .004
7 (372,583) −.019 −.009 −.003 .001 .004 .010 .012 .013 .013 .013 .013 .013 .013 .013 .013
8 (49,625) .025 .031 .034 .036 .037 .038 .035 .033 .030 .028 .027 .025 .024 .023 .022
9 (3,867) .038 .028 .022 .018 .016 .011 .010 .010 .010 .011 .011 .011 .011 .011 .011
10 (114,228) .012 .002 −.004 −.009 −.012 −.020 −.025 −.027 −.028 −.029 −.029 −.029 −.029 −.029 −.029
11 (14,209) .053 .044 .039 .036 .033 .027 .022 .019 .017 .015 .014 .013 .012 .012 .011
12 (80,157) −.002 −.017 −.027 −.034 −.039 −.054 −.064 −.067 −.068 −.069 −.069 −.096 −.068 −.068 −.067
13 (9,478) .092 .079 .071 .065 .060 .045 .033 .026 .022 .019 .016 .015 .013 .012 .011
14 (52,148) .008 .016 .022 .027 .030 .040 .046 .048 .049 .049 .048 .048 .048 .047 .047
15 (6,482) .019 .022 .025 .027 .029 .033 .034 .033 .031 .030 .029 .027 .026 .025 .025
16 (69,625) −.114 −.010 −.086 −.078 −.071 −.052 −.034 −.026 −.021 −.017 −.015 −.013 −.011 −.010 −.009
17 (12,008) −.041 −.033 −.027 −.023 −.020 −.012 −.007 −.006 −.005 −.005 −.004 −.004 −.004 −.004 −.004
18 (38,027) .038 .023 .014 .008 .004 −.004 −.004 −.002 −.0006 .0009 .002 .003 .004 .004 .005
19 (23,474) .137 .120 .109 .101 .096 .083 .076 .073 .071 .070 .068 .067 .066 .065 .064

Note. No penalty is assessed if d = 1. Values in parentheses represent the sample sizes for each subgroup.

Table C5 Estimated Mean Score Differences (Unequal Weights) for Assessment Accuracy: TOEFL Writing

d

Subgroup 1 2 3 4 5 10 20 30 40 50 60 70 80 90 100

1 (15,592) −.002 −.025 −.038 −.047 −.053 −.064 −.063 −.059 −.055 −.052 −.049 −.047 −.045 −.043 −.041
2 (4,374) .037 .018 .007 −.0002 −.005 −.015 −.017 −.015 −.013 −.012 −.011 −.010 −.009 −.009 −.008
3 (67,464) .041 .024 .013 .005 .0006 −.014 −.022 −.024 −.026 −.026 −.027 −.027 −.027 −.027 −.027
4 (14,615) .065 .049 .038 .031 .026 .014 .006 .003 .002 .001 .0003 −.0003 −.0007 −.001 −.001
5 (47,016) .019 .016 .014 .012 .011 .007 .003 .001 −.0004 −.001 −.002 −.003 −.004 −.005 −.005
6 (11,582) .029 .023 .019 .016 .014 .009 .005 .002 .0006 −.001 −.002 −.002 −.003 −.004 −.004
7 (372,583) −.016 −.006 .0007 .005 .008 .015 .019 .020 .020 .020 .020 .020 .020 .020 .020
8 (49,625) .026 .032 .036 .038 .039 .041 .039 .036 .034 .033 .031 .030 .029 .028 .027
9 (3,867) .031 .020 .013 .008 .006 −.0002 −.002 −.002 −.002 −.002 −.002 −.002 −.002 −.002 −.002
10 (114,228) .008 −.004 −.011 −.016 −.019 −.028 −.034 −.037 −.038 −.039 −.039 −.039 −.040 −.040 −.040
11 (14,209) .048 .039 .033 .029 .026 .019 .013 .009 .007 .006 .004 .003 .002 .001 .001
12 (80,157) .002 −.014 −.025 −.032 −.038 −.053 −.063 −.066 −.068 −.068 −.069 −.069 −.068 −.068 −.067
13 (9,478) .098 .085 .076 .070 .064 .049 .037 .030 .026 .023 .021 .019 .017 .016 .015
14 (52,148) .005 .013 .019 .023 .026 .035 .041 .042 .043 .042 .042 .041 .041 .040 .040
15 (6,482) .016 .020 .023 .025 .026 .029 .030 .029 .027 .025 .024 .023 .022 .021 .020
16 (69,625) −.108 −.090 −.078 −.069 −.062 −.042 −.024 −.015 −.009 −.005 −.002 −.0001 .002 .003 .004
17 (12,008) −.038 −.029 −.023 −.019 −.016 −.008 −.003 −.001 −.0004 −.0000 .0002 .0004 .0006 .001 .001
18 (38,027) .036 .019 .009 .002 −.003 −.012 −.013 −.011 −.009 −.007 −.006 −.005 −.004 −.003 −.003
19 (23,474) .136 .117 .105 .097 .091 .077 .069 .067 .065 .064 .063 .062 .061 .061 .060

Note. No penalty is assessed if d = 1. Values in parentheses represent the sample sizes for each subgroup.
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Table C6 Estimated Mean Score Differences (Equal Weights) for Assessment Accuracy: GRE Writing

d

Subgroup 1 2 3 4 5 10 20 30 40 50 60 70 80 90 100

1 (7,431) .040 .043 .044 .044 .044 .043 .040 .038 .036 .034 .033 .031 .030 .029 .029
2 (4,374) .012 .021 .025 .027 .028 .028 .025 .021 .018 .016 .014 .013 .012 .011 .010
3 (1,808) −.005 −.003 −.002 −.002 −.002 −.003 −.006 −.008 −.009 −.010 −.011 −.012 −.013 −.013 −.014
4 (18,807) −.003 .008 .014 .017 .019 .024 .025 .025 .024 .023 .023 .022 .022 .021 .021
5 (1,223) .003 .008 .010 .012 .012 .012 .008 .005 .003 .001 −.0001 −.001 −.002 −.003 −.003
6 (3,265) .0004 .001 .001 .0009 .0008 −.0002 −.002 −.004 −.006 −.007 −.008 −.009 −.009 −.01 −.011
7 (31,677) .041 .052 .057 .059 .060 .059 .053 .048 .045 .042 .040 .039 .037 .036 .035
8 (2,808) .074 .069 .067 .065 .065 .063 .062 .061 .061 .059 .058 .057 .056 .054 .053
9 (1,264) .023 .027 .028 .029 .029 .028 .024 .020 .018 .015 .014 .012 .011 .009 .008
10 (2,159) .065 .075 .079 .081 .082 .082 .078 .073 .070 .067 .064 .062 .060 .059 .057
11 (5,025) −.027 −.030 −.031 −.032 −.032 −.033 −.032 −.032 −.031 −.030 −.030 −.029 −.028 −.028 −.028
12 (6,846) −.040 −.053 −.058 −.061 −.062 −.061 −.054 −.048 −.043 −.039 −.036 −.033 −.031 −.029 −.027
13 (6,669) −.036 −.044 −.047 −.049 −.049 −.049 −.045 −.041 −.039 −.036 −.034 −.033 −.031 −.030 −.029
14 (725) −.034 −.042 −.046 −.047 −.048 −.049 −.046 −.043 −.040 −.038 −.037 −.035 −.034 −.033 −.032
15 (2,888) −.014 −.020 −.022 −.024 −.024 −.025 −.024 −.022 −.021 −.020 −.020 −.019 −.019 −.018 −.018
16 (45,447) .005 .001 −.0003 −.001 −.002 −.002 −.001 −.0005 −.0005 .0003 .0005 .0007 .0008 .0009 .0009
17 (52,435) −.028 −.034 −.037 −.038 −.039 −.039 −.037 −.035 −.033 −.032 −.030 −.029 −.029 −.028 −.027

Note. No penalty is assessed if d = 1. Values in parentheses represent the sample sizes for each subgroup.

Table C7 Estimated Mean Score Differences (Unequal Weights) for Assessment Accuracy: GRE Writing

d

Subgroup 1 2 3 4 5 10 20 30 40 50 60 70 80 90 100

1 (7,431) .040 .043 .044 .044 .044 .043 .040 .038 .036 .034 .033 .031 .030 .029 .029
2 (4,374) .012 .021 .025 .027 .029 .025 .026 .022 .020 .017 .016 .014 .013 .012 .012
3 (1,808) −.004 −.003 −.002 −.002 −.002 −.003 −.005 −.007 −.009 −.010 −.011 −.012 −.012 −.013 −.013
4 (18,807) −.003 .008 .014 .017 .020 .025 .026 .026 .025 .025 .024 .023 .023 .022 .022
5 (1,223) .003 .008 .011 .012 .012 .012 .009 .006 .004 .002 .0008 −.0003 −.001 −.002 −.002
6 (3,265) .001 .001 .001 .001 .001 −.0001 −.002 −.004 −.005 −.007 −.008 −.008 −.009 −.010 −.010
7 (31,677) .041 .052 .057 .059 .060 .059 .053 .048 .045 .042 .040 .039 .037 .036 .035
8 (2,808) .074 .069 .067 .065 .064 .063 .062 .062 .061 .059 .058 .057 .056 .054 .053
9 (1,264) .023 .027 .028 .029 .029 .028 .024 .021 .018 .016 .014 .012 .011 .010 .009
10 (2,159) .065 .075 .079 .081 .083 .083 .078 .074 .071 .068 .065 .063 .061 .059 .058
11 (5,025) −.027 −.030 −.031 −.032 −.032 −.033 −.032 −.032 −.031 −.030 −.030 −.029 −.029 −.028 −.028
12 (6,846) −.041 −.053 −.058 −.061 −.062 −.062 −.055 −.049 −.044 −.040 −.037 −.034 −.032 −.030 −.028
13 (6,669) −.036 −.044 −.047 −.049 −.050 −.050 −.046 −.042 −.039 −.037 −.035 −.033 −.032 −.031 −.030
14 (725) −.034 −.042 −.046 −.048 −.049 −.049 −.046 −.043 −.041 −.039 −.037 −.036 −.035 −.033 −.032
15 (2,888) −.014 −.020 −.022 −.024 −.025 −.025 −.024 −.023 −.022 −.021 −.020 −.020 −.019 −.019 −.018
16 (45,447) .005 .001 −.0003 −.001 −.002 −.002 −.001 −.0006 −.0001 .0002 .0004 .0006 .0007 .0008 .0008
17 (52,435) −.028 −.034 −.037 −.038 −.039 −.039 −.037 −.035 −.033 −.032 −.031 −.030 −.029 −.028 −.028

Note. No penalty is assessed if d = 1. Values in parentheses represent the sample sizes for each subgroup.
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Table C8 Estimated Mean Score Differences for Assessment Accuracy: Praxis Writing

d

Subgroup 1 2 3 4 5 10 20 30 40 50 60 70 80 90 100

1 (18,362) .034 .039 .043 .047 .050 .060 .070 .074 .077 .079 .080 .081 .081 .082 .082
2 (4,583) −.062 −.055 −.049 −.044 −.039 −.022 −.004 .006 .012 .016 .020 −.022 .025 0.026 .028
3 (7,822) .010 .014 .017 0.019 .021 .029 .037 .041 .043 .044 .045 .046 .047 .047 .047
4 (3,583) −.002 −.001 −.0005 .0003 .0009 .003 .006 .007 .007 .007 .008 .008 .008 .008 .008
5 (944) .005 .005 .006 .006 .006 .007 .008 .008 .009 .009 .009 .010 .010 .010 .011
6 (9,599) .002 .004 .005 .006 .008 .012 .016 .018 .019 .020 .020 .020 .020 .020 .021
7 (104,820) −.004 −.006 −.007 −.008 −.009 −.013 −.016 −.018 −.020 −.020 −.020 −.021 −.021 −.021 −.021

Note. No penalty is assessed if d = 1. Values in parentheses represent the sample sizes for each subgroup.
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